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Abstract- This paper presents methods for the analysis
of human tremor using particle swarm optimization.
Two forms of human tremor are addressed: essential
tremor and Parkinson's disease.  Particle swarm
optimization is used to evolve a neural network that
distinguishes between normal subjects and those with
tremor. Inputs to the neural network are normalized
movement amplitudes obtained from an actigraph
system. The results from this preliminary investigation
are quite promising, and work is continuing.

1 Introduction

Tremor is defined as any involuntary, approximately
rhythmic, and roughly sinusoidal movement (Elble and
Koller 1990). The analysis and diagnosis of human tremor
is a very challenging area. Two of the most common types
of tremor affecting the U.S. population are essential tremor
and Parkinson’s disease (Elble and Koller 1990). Despite
years of effort, relatively little seems to be known about
these disorders.

Precise characterizations of these forms of pathologic
tremor in terms of frequencies and amplitudes do not exist.
Furthermore, differentiation between normal physiologic
tremor and these pathologic tremors is often difficult, and
precise characterization of the ranges of normal physiologic
tremors have not been defined.

This paper presents the results of a preliminary study
that used digital actigraphs to acquire data from normal and
tremor subjects, and particle swarm optimization to evolve a
neural network to discriminate between tremor and normal
subjects.

2 Data Acquisition Using Actigraphy

Actigraphy is the measurement of movement. Wrist-worn
devices for measuring movement called actigraphs have
been available since the 1970s. These actigraphs have been
widely used in medicine for theraputic, drug, and diagnostic
studies. Analysis of data from a wrist-worn actigraph
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privides an inexpensive and non-invasive method of
movement assessment.

Most actigraphs use a piezoresistive accelerometer as the
sensor. Many actigraphs, however, do not provide the
absolute value of acceleration as output. Rather, they
provide the varying, or “AC,” component, of acceleration as
output.  Additionally, although motion occurs in three
dimensions, most actigraphs measure movement on only
one axis. When worn on the wrist, this axis is generally
perpendicular to the inside or outside flat surface of the
wrist.

Until recently, available actigraph systems recorded only
limited, summarized data. For example, typical
measurements have been limited to the number of zero
crossings (above some threshold) that occur each time
epoch. Time epochs may be as brief as 4 or 5 seconds, or as
long as a minute or more.

Recently, tri-mode actigraphs have become available
from Precision Control Design, Inc. (PCD), in Ft. Walton
Beach, FL, that record zero crossings, time above threshold,
and integrated amplitude for each time epoch. These units
still do not, however, provide the sampling frequency and
amplitude resolution necessary to quantitatively characterize
human tremor.

Within the past few months, however, digital signal
processing (DSP) based actigraphs have been developed
that provide the required sampling frequency and
sensitivity. PCD’s Tele-Actigraph system samples data at
27.3 Hz with a resolution of about 12 bits. It can sense a
change in acceleration as small as about 10 milli-gravities
(mGs). Data are telemetered real-time on a 300 megahertz
carrier from the wrist-worn unit to an ambulatory unit that
can be worn on the belt. The belt unit can acquire data
autonomously for up to 5 hours 20 minutes, after which it is
downloaded into a PC. Alternately, the PC can be
connected directly to the belt unit to achieve continuous
data acquisition. Using Labview on a PC, for example, data
can be simultaneously acquired, viewed, and stored on the
hard disk of the PC.
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For this preliminary study, data were acquired with the
Tele-Actigraph (TAG) worn on the outside of the subject’s
non-dominant wrist. The data acquired were for what is
known as postural tremor. The subject held his or her arm
with the wrist and elbow unsupported. They were allowed
to hold their arm in a comfortable position, with the elbow
bent and the forearm approximately parallel to the floor.
Data were acquired for approximately 60 seconds from each
subject.

Figure 1 shows the three components of the Tele-
Actigraph system. On the left is the TAG unit itself, which
is usually worn on the wrist, but which may be attached to
other parts of the body such as the leg. In the center of
Figure 1 is the belt-worn unit that acquires the data from the
TAG unit. On the right is the belt unit programmer that is
used to load programs into the belt unit. In the current
system configuration, the belt unit must be re-initialized by
the belt unit programmer each time a new data session is
started. In practice, the belt unit programmer is connected
to a PC via the parallel port. The TAG unit can be

programmed via a serial port on the PC.

Figure 1. The Tele-Actigraph system.

Figure 2. The TAG and belt units being worn,

Figure 2 shows the TAG unit being worn on the wrist,
and the belt unit being worn on the belt. This is the usual
configuration for ambulatory data acquisition sessions
ranging up to five hours and twenty minutes in length.

3 Data Preprocessing

The raw data acquired from the TAG is in a columnar
ASCII format, with the high nybble (4 bits) followed by the
low byte (8 bits) for each data sample. The first
preprocessing entails adding 16 times the value of the high
nybble to the value of the low byte to obtain each data
sample value.

The resulting raw data file is then viewed using a Matlab
script, and the file is shortened to remove data received
during the warm-up period of the TAG, which can be up to
30 seconds (but which is usually less than 15 seconds). The
shortened raw data file is then analyzed using the Matlab
power spectral density routine. Various spectral resolutions
were tried, from 512 points down to 64 points. It was
decided to use 128-point transforms for this study, resulting
in an amplitude value for each of 64 frequency bins.

The upper and lower 2 values are stripped from the files,
resulting in 60-point data vectors. The square root is taken
for each power value, and the resulting amplitude vectors
are normalized such that the maximum value for each
vector is 1. These normalized 60-element amplitude vectors
are then used as inputs to a neural network.

4 Analysis with Particle S warm Optimization

Particle swarm optimization (PSO) is an evolutionary
computation technique motivated by the simulation of
social behavior. PSO was developed by Kennedy and
Eberhart (Kennedy and Eberhart 1995; Eberhart, Simpson,
and Dobbins 1996).

PSO is similar to a genetic algorithm (GA) in that the
system is initialized with a population of random solutions.
It is unlike a GA, however, in that each potential solution is
also assigned a randomized velocity, and the potential
solutions, called particles, are then “flown” through the
problem space. Rather than using traditional genetic
operators, each particle adjusts its flight according to its
own flying experience and its companions’ flying
experience.

PSO was used in this paper for evolving the neural
network weights, and, indirectly, to evolve the network
structure. This was accomplished by evolving, in addition
to the network weights, the slopes of the sigmoidal transfer
functions of the hidden and output processing elements
(PEs) of a feedforward network. In other words, using the
PE transfer function output = 1/(1 + e-k*input) the slope k
was evolved in addition to evolving the weights. For a
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Figure 3. Power spectral density of wrist postural tremor of subject with Parkinson’s disease.
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Figure 4. Power spectral density of wrist postural tremor of normal subject.
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complete description of using PSO to evolve artificial
neural networks, see Eberhart and Shi (1998).

The purpose of this preliminary study was to determine
if pathologic tremor (essential tremor and Parkinson’s
disease) could be distinguished from normal physiologic
tremor. No distinction was thus made between essential
tremor and Parkinson’s tremor subjects when evolving the
neural network. A feedforward network with 60 inputs, 12
hidden PEs, and two outputs, was evolved. Sigmoidal
transfer functions were used in the hidden and output layers.

Data sets were available from 12 subjects with tremor
and 10 mornal subjects. The power spectral density plot for
a subject with Parkinson’s disease is shown in Figure 3,
while Figure 4 depicts the spectrum for a normal patient.
Neural networks were originally evolved using all 22
patterns; generalization was not the main object of this
effort. However, subsequently, training on all but one
pattern and testing on that remaining pattern has yielded an
accuracy of 100 percent. Table I presents the outputs from
a neural network evolved using all 22 patterns.

Table I. Classification results with a 60-12-2
feedforward neural network

Classification Output 1 Output 2
Normal 0.053 0.948
Normal 0.027 0.973
Tremor 0.917 0.088
Tremor 0.981 0.019
Normal 0.181 0.813
Normal 0.025 0.975
Normal 0.038 0.962
Tremor 0.982 0.020
Tremor 0.932 0.067
Tremor 0.948 0.051
Tremor 0.968 0.036
Tremor 0.982 0.019
Normal 0.048 0.953
Tremor 0.986 0.015
Normal 0.066 0.935
Normal 0.070 0.930
Tremor 0.842 0.157
Tremor 0.944 0.058
Normal 0.028 0.972
Tremor 0.955 0.049
Tremor 0.990 0.011
Normal 0.038 0.961

The outputs for the first processing element show
outputs greater than 0.8 for all tremor subjects, and under
0.2 for all normal subjects. Analogously, the second output
has outputs greater than 0.8 for all normal subjects and
under 0.2 for all tremor patients.

The particle swarm used to evolve the neural network
had a population of 30 particles and a maximum velocity of
2.0. The initial damping weight was 0.9, and it was set to
decrease to 0.4 over 2,000 iterations. However, only 38
iterations, or generations, were required to evolve the
network. The process was thus extremely fast.

These results are very encouraging. Time has not
permitted the evolution of other network topologies, but this
is planned as part of the continuing work in this area.

Also planned are attempts to distinguish between
essential tremor and Parkinson’s disease, and between
pathologic and physiologic tremor (at the early stages of
pathologic tremor).

5 Conclusions

Particle swarm optimization has been successfully applied
to evolve a neural network that classifies human tremor
(Parkinson’s disease or essential tremor) versus normal
subjects. The method is extremely fast and highly accurate.
The relatively small size of the data set indicates the need
for further testing and development.
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