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Abstract: This paper presents a Particie Swarm Optimization
(PSO) algorithm for multiobjective optimization problems. PSO
is modified by using a dynamic neighborhood strategy, new
particle memory updating, and one-dimension optimization to
deal with multiple objectives. Several benchmark cases were
tested and showed that PSO could efficiently find multiple
Pareto optimal solutions.

1. INTRODUCTION

In the real world, there are many problems involving
multiple  objectives, which should be optimized
simultaneously. Thus multiobjective optimization is a very
important research topic both for scientists and engineers and
there are still many open questions in this area. General
multiobjective optimization problems can be defined in the
following format.

Optimize
F@® =@, £,G),r £ (D)}

Where g, (X)<0 for j=l,.,p and
h;(X)=0 for j=p+l..,m

%= (x,,x;..x,)€RY

For multiobjective optimization problems, objective
functions may be optimized separately from each other and
the best solution can be found for each objective dimension.
However, suitable solutions for all the functions can seldom
be found. This is because in most cases the objective
functions are in conflict with each other. It results in there
being a group of alternative solutions which must be
considered equivalent in the absence of information
concerning the relevance of each objective relative to the
others. i.e., there is no single optimal value as in single-
objective optimization.

The family of solutions of a multiobjective optimization
problem is composed of all those potential solutions such that
the components of the corresponding objective vectors cannot
be all simultaneously improved. This is known as the concept
of Pareto optimality.

The concept of Pareto optimality was formulated by
Vilfredo Pareto in 19th century. We say that a point¥” € F

0-7803-7282-4/02/$10.00 ©2002 IEEE

(where F is the feasible solution space) is Pareto optimal if
for every x € F either

(fi®)=£E) Viel
Or there is at least one ie I (where I is the objective
dimension) such that

fi®> f,(E)

In words, this definition says that X is Pareto optimal if
there is no feasible vector X that would decrease some
objective values without causing a simultaneous increase in at
least one other objective value [1]. The Pareto optimum

usually gives a group of solutions called nor-inferior or non-
dominated solutions instead of a single solution.

Traditional optimization techniques, such as gradient-based
methods, are difficult to extend to the true multiobjective case,
because they were not designed to deal with multiple optimal
solutions. In most cases, nultiobjective problems have to be
scaled to a single objective problem before the optimization
[4]. Thus the result produces a single Pareto optimum for
each run of the optimization process and the result is highly
sensitive to the weight vector used in the scaling process.
Moreover, in many cases, multiobjective optimizations prefer
to provide a group of Pareto optimal solutions for the
decision maker.

Because evolutionary computation algorithms deal with a
group of candidate solutions, it seems natural to use
evolutionary computation algorithms in multiobjective
optimization problems to find a group of Pareto optimal
solutions simultaneously. In the past several years, many
evolutionary algorithms based optimizations have been
developed. There are many mpers that have reviewed the
evolutionary based multiobjective optimization techniques
[1,4,8]. Most of them are based on genetic algorithms. This
paper shows a new approach to solve multiobjective
optimization with particle swarm optimization.

IT. MODIFIED PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Kennedy and Eberhart
[2,6]. It uses the common evolutionary computation
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techniques: 1. It is initialized with a population of random
solutions. 2. It searches for the optimum by updating
generations. 3. The reproduction is based on the old
generations. In PSO, the potential solutions, called particles,
are "flown" through the problem space by following the
current optimal particles.

The updates of the particles are accomplished according to
the following equations. Equation 1 calculates a new velocity
for each particle (potential solution) based on its previous
velocity (Vy), the particle's location at which the best fitness
so far has been achieved (pg, or pBest), and the population
global (or local neighborhood, in the neighborhood version of
the algorithm) location (p,, or gBes?) at which the best
fitness so far has been achieved. Equation 2 updates each
particle’s position in solution hyperspace. The two random
numbers are independently generated. The use of the inertia
weight w has provided improved performance in a number of
applications [10].

Via = wXVy +a Xrand()X(pig — %g) + ¢ XRand()x(pga —x4) (1)
X = Xig +Vy 2)

Sharing many characteristics with other evolutionary
algorithms, PSO could be a potential method for
multiobjective optimization. However, basic global and local
version PSO algorithms are not suitable for there is no
absolute global optimum in multiobjective functions. It is not
easy to define a single gBest or [Best during each generation.

Compared with genetic algorithms (GAs), the information
sharing mechanism in PSO is significantly different. In GAs,
chromosomes share information with each other. So the
whole population moves like a one group towards an optimal
area. In PSO, only gBest (or [Bes?) gives out the information
to others. It is a one-way information sharing mechanism.
The evolution only looks for the best solution. All the
particles tend to converge to the best solution quickly even in
the local version.

However, due to the point-centered characteristics, global
PSO is unable to locate the Pareto front, which includes
multiple optimal points. The reighborhood (local) version
does not work either, because the neighbors are predefined
and they often only refine the search near the optimum.

Here a dynamic neighborhood PSO is presented. In each
generation, after calculating distances to every other particle,
each particle finds its new neighbors. Among the new
neighbors, each particle finds the local best particle as the
IBest. The problem is how to define the distance and how to
define the local best particle.

Retaining  generalization, two-objective  continuous

numeric optimizations are used to demonstrate the dynamic
neighborhood PSO.
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Figure 1: an example of problem with two objective functions. The
Pareto front is marked with solid line

In two-dimensional fitness value space, the Pareto front is
the boundary of fitness value region, it includes the
combination of continuous or discontinuous lines and/or
points. For a minimization problem, the boundary should be
located & lower left side of the fitness space. If the first
fitness values are fixed, only optimize the second objective
function, and the final solution should be “dropped” onto the
boundary line, which includes the Pareto front. So the
algorithm used to search for local optima in each generation
is defined as follows:

1. Calculate the distances of the current particle from other
particles in the fitness value space of the first objective
function (not the variable space).

2. Find the nearest m particles as the neighbors of the
current particle based on the distances calculated above
(m the neighborhood size).

3. Find the local optima among the neighbors in terms of
the fitness value of the second objective function.

Another modification of the PSO is the update of the pBest.
The pBest is the best position in particle’s history. Only

when a new solution dominates the current pBest, is the pBest
updated.

Based on the above modifications, the PSO algorithm
successfully finds multiple optimal solutions and locates the
Pareto front.

III. PARAMETER CONTROL

The neighbor size m may affect the number of non-
dominated solutions. We use m = 2, so a neighborhood is the
particle and its two closest particles in fitness value space of
the first fitness function.

Another question is how to pick up the objective function to
optimize and the one to be fixed. For this empirical study, we
always fix the relatively simple objective function and
optimize the difficult one, here we always fix the first

function f, and optimize f, . We still do not know how this
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process affects the final performance of the algorithm. It may
highly depend on the problem itself.

In traditional PSO, the population size of PSO is often set
between 10 and 40. However, under the multiobjective
environment, the number of non-dominated solutions is
directly linked to the population size. So a larger population
size is preferred.

In PSO, there are not many parameters that need to be
tuned. Only the following parameters in equation (1) and (2)
need to be taken care of: maximum velocityV,,, , inertia
weight, cognition learning rate ¢, and social learning ratec, .

Parameter settings were used as before [3,5]. The inertia
weight was [0.5 + (Rnd/2.0)]. The learning rates were
1.49445. The maximum velocity V,,, was set to the
dynamic range of the particle on each dimension.

IV. EXPERIMENTS AND RESULTS

This dynamic neighborhood PSO was applied to solve
several test problems. The PSO was implemented in Java.

The first group of test problems was described by Lis and
Eiben. [7]

e Testcasel,
Lxy) = +yH)"

L1, p) =((x=0.5) +(y-0.5))"*
-5<x<10,

Minimize
Where

After 200 generations 94 non-dominated solutions out of
100 solutions were found, the results are shown in Figure 2.
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Figure 2: Results of test case 1 in terms of F1 and F2 values.

o Testcase2

Minimize
-x if x££l
—2+x if 1<x<3
fHix)= :
4-x if 3<x<4
—4+x if x>4

f,(0) =(x=5)?
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Where -100<x<100,

After 200 generations 96 non-dominated solutions out of
100 solutions were found, the results are shown in Figure 3.
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Figure 3: Results of test case 2 in terms of F1 and F2 values.

The second group of test problems was described by
Zitzler [8,9]. Each of the test functions defined below is
structured in the same manner and consists of three functions
fl,g,and h,

Minimize #%) = (f,(x,), /(%))
Subjectto f,(¥)=g(x,rX,) - B(f;(x),2(%y ..., X, ))
Where X =(x,,...,x,)

The population size used in PSO was 200. And the
iteration number was 500.

o Test function t; has a convex Pareto-optimal front

Sitx) = X
glxymnx,) = 149-(Q x)/(n-1)
h(f.8) = 1-Jfi/g
Where n=30 and x,€{0,1]

After 500 iterations, 88 non-dominated solutions out of
200 particles were found. The results show in Figure 4.
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Figure 4: Results of test case t, in terms of F1 and F2 values.

o  Test function t, has a convex Pareto-optimal front
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Sixy) = X
glxynx,) = 149-3 x)/(n—1)
h(f,8) = 1-(fi/g)

Where n=30 and x,€[0,1]

After 500 iterations, 66 non-dominated solutions out of
200 particles were found. The results are shown in Figure 5.
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Figure 5: Results of test case t, in terms of F1 and F2 values.

o  Test function t; has a convex Pareto-optimal front
Sitx,) = X
glxypnx,) = 149, x)/(n-1)
fng) = 1-yfi/ g=(fi/g)sin(10n)
Where n=30 and x,€[0,1]

After 500 iterations, 63 non-dominated solutions out of
200 particles were found. The results are shown in Figure 6.
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Figure 6: Results of test case t; in terms of F1 and F2 values.

+  Test function t; has a convex Pareto-optimal front
Sitx)) = X
g(xy,0sX,) 1+10(n—1)+ Y, (x] —10cos@nx,))
h(f:,8) = 1-y/i/g

Wheren=30, x,€[0,1] and x,,...x, € [-5,5]
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After 500 iterations, 152 non-dominated solutions out of
200 particles were found. The results are shown in Figure 7.
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Figure 7: Results of test case t, in terms of F1 and F2 values.

e  Test function t; has a convex Pareto-optimal front

fiey) = 1-exp(—4x,)sin’(6mx,)
g(xypmnx,) = 149-(Q_x) (n=1)"%
h(f,g) = 1-(fi/g)

Where n=10 and x,€[0,1]

After 500 iterations, 145 non-dominated solutions out of
200 particles were found. The results are shown in Figure 8.
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Figure 8: Results of test case tg in terms of F1 and F2 values.

In order to compare different optimization techniques,
some notion of performance must be involved. However,
there is no well-established ubiquitous performance metric
for multiobjective optimization problems due to complexity
and different user demands. Shown above are some graphical
results. Visually compared to other results [7, 8, 9], PSO
showed the potential to be a method to multiobjective
optimization problems. The performance metrics are still

under investigation.

V. CONCLUSION
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This paper presents a particle swarm optimization
algorithm for multiobjective optimization. Compared to the
traditional PSO, there are three modifications in this dynamic
neighborhood version:

1. Dynamic neighbors: Each particle has different
neighbors in each generation based on the fitness values.

2. New pBest updating strategy: Only those solutions which
dominate the currentpBest will be counted.

3. One-dimension optimization: the algorithm
optimizes on one objective in each run.

only

It is demonstrated that dynamic neighborhood PSO is an
efficient and general method to locate the Pareto front of
multiobjective optimization problems. The advantage of the
PSO method is that it is easy to implement and has few
parameters that need to be adjusted.

This paper represents only the first step in the investigation
of solving multiobjective parameter optimization problems
using particle swarm optimization. Further study and
investigation are needed to test the ability of PSO. The
following problems need to be considered. 1. The parameters
and their affect on the performance of the optimization
should be studied in more detail. 2. In the process, PSO only
optimize on one objective, thus how to select the objective
and how it affects the result should be considered. 3. The
distribution of the solutions, a better algorithm will give out
evenly distributed Pareto optimal solutions or desired
distributed solutions. 4. The current PSO version only deals
with multiobjective optimization without constraints. How to
deal with constraints is still a problem. 5. The hypothesis
used about one-dimension optimization is based on two-
objective function optimization. Can it be applied to multiple
(greater than two) objective optimization problems? The
comparison between the PSO algorithm and other
evolutionary algorithm approaches also should be
investigated.
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