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Abstract- This paper reviews the development of the
particle swarm optimization method in recent years,
Included are brief discussions of various parameters.
Modifications to adapt to different and complex
environments are reviewed, and real world
applications are listed.

L INTRODUCTION

Particle swarm optimization (PSQ) is population based
stochastic optimization technique developed by Kennedy
and Eberhart in 1995 [I, 2]. As a relatively new
evolutionary paradigm, PSO has grown in the past several
years, and over 300 papers related to PSO have been
published. More and more researchers are interested in
this new algorithm and it has been investigated from
various perspectives (Figure 1}.
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Figure |: Number of papers published in each year
(Incomplete data for year 2003)

Following the introduction, major developments in
PSO are reviewed in section II. The original version is
presented. Following are discussions of various
parameters used in PSQ. Modifications to improve the
algorithms are also discussed. In section III, PSO in
various scenarios is discussed, including training neural
networks, multiobjective optimization, dynamic tracking,
and constraint optimization. Finally, some typical real
world applications are presented.

II. BASIC ALGORITHM

PSO is inspired by the behavior of bird flecking.
Assume the following scenario: a group of birds are
randomly searching food in an area. There is only one
piece of food in the area being searched. The birds do not
know where the food is. But they know how far the food
is and their peers’ positions. So what's the best strategy to
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find the food? An effective strategy is to follow the bird
which is nearest to the food.

PSO learns from the scenario and uses it to solve the
optimization problems. In PSO, each single solution is
like a "bird" in the search space, which is called
"particle". All particles have fitness values which are
evaluated by the fitness function to be optimized, and
have velocities which direct the flying of the particles.
The particles fly through the problem space by following
the particles with the best solutions so far.

A. Basic algorithm

PSO is initialized with a group of random particles
{solutions) and then searches for optima by updating each
generation. In every iteration, each particle is updated by
following two "best" values. The first one is the location
of the best solution (fitness) a particle has achieved so far.
This value is called pBesr. Another "best" value is the
location of the best solution that any neighbor of a
particle has achieved so far. This best value is a
neighborhood best and called nBest. When a particle takes
all the population as its neighbors, the best location is a
global best and is called gBesr.

The general process of PSO is as follows

Initialize the particle population randomly

Do
Calculate fitness values of each particle
Update pbest if the current fitness value is better
than pBest
Determine nBest for each particle: choose the
particle with the best fitness value of all the
neighbors as the nBest
For each particle
Calculate particle velocity according to (a)
Update particle position according to (b)
While maximum iterations or minimum criteria is
not attained

Figure 2: The process of particle swarm

The core of PSQ is the updating formulae of the
particle, which can be represented as fellows. Equation
(a) calculates a new velocity for each particle (potential
solution) based on its previous velocity (V,), the
particle's location at which the best fitness so far has been
achieved ( p,, , or pBest), and the neighbor’s best location



(P,i- Or nBest) at which the best fitness in a

neighborhood so far has been achieved. Equation (b)
updates each particle's position in the solution
hyperspace. Rand() and rand() are two random numbers
independently generated. ¢; and ¢; are two learning
factors, which control the influence of pBest and nBest on
the search process. The use of the inertia weight w has
provided improved performance in a number of
applications [3].
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B. The selection of pBest

pBest is the best location the particle has achieved so
far, It can be viewed as the particle’s memory. Currently
only one memory slot is allocated to each particle,

The best location does not always depend on the value
of the fitness function only. Many constraints can be
applied to the definition of the best location to adapt to
different problems. And this won’t lower the search
ability and performance. For example, in nonlinear
constrained optimization problems [4, 5], the particles
only remember those positions in the feasible space and
disregard unfeasible solutions. This simple medification
successfully locates the optimum of a series of benchmark
problems. In a multiobjective optimization (MO)
environment [6, 7], the best position is determined by
Pareto dominance (if solution A is not worse than solution
B in every objective dimension and is better than solution
B in at least one objective dimension, solution B is
dominated by solution A). Another popular technique is
memory reset. In dynamic environments [8, 9], particles
pBest will be reset to the current value if the environment
changes.

C. The selection of nBest

rBest is the best position that neighbors of a particle
have achieved sc far. The neighborhood of a particle is
the social environment a particle encounters. The
selection of nbest consists of two steps, which are to
determine the neighborhood and select the nbest among
the neighbors,

Traditionally, PSO 1takes certain predetermined
conjunct particles as the neighbors. The number of
neighbors or the size of the neighborhood will affect the
convergence speed of the algorithm. It is generally
accepted that a larger neighbor size will make the
particles converge faster, while a small neighbor size will
help to prevent the particle from premature or pre-
convergence. gBest is an extreme situation of the nBest
version. It takes the whole population as the neighbors of
each particle [1]. Although Kennedy et al investigated
various neighborhood structures and their influences on
performance [10, 11j, no conclusive results have been
reached so far. In multiobjective optimization problems,
an external repository of Pareto optimal solutions is used
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as the neighborhood in several papers discussed in section
I11. Brits et al. [1, 12] choose topological neighborhood
method to deal with multimodal functions. However, it is
doubtful that a topological neighborhood structure can
escape from local optima easily.

The selection of the nBest is usually determined by
comparing fitness values among neighbors, However, ina
multi-objective optimization environment, the situation is
more complicated when there are multiple fitness values
for each particle. Section IIl provides a more detailed
discussion of this topic. Peram et al. [13]used the ratio of
the fitness and the distance of other particles to determine
the mbest and claimed it outperforms the original version
of PSO.

D. Learning factors

The leamning factors ¢; and c; in equation (a) represent
the weighting of the stochastic acceleration terms that pull
each particle toward pBest and rBest poesitions [14].
From a psychological standpoint, the cognitive term
represents the tendency of individuals to duplicate past
behaviors that have proven successful, whereas the social
termn represents the tendency to follow the successes of
others.

Both ¢; and c; are sometimes set to 2.0. The obvious
reason is it will make the search cover all surrounding
regions which is centered at the pBest and nBest. 1.49445
is also used according to the work by Clerc [15] which
indicates that a constriction factor may be necessary to
insure convergence of PSO [14]

In most cases, the learning factors are identical. That
puts the same weights on social searching and cognitive
searching. Kennedy investigated two extreme cases:
social-only model and cognitive-only model and found
out that both parts are essential to the success of particle
swarm searching [16]. No definitive conclusions about
asymmetric learning factors have been reported.

E. Inertia weight

Inertia weight was first introduced by Shi and Eberhart
[3]. The function of inertia weight is to balance global
exploration and local exploitation. Linearly decreasing
inertia weights were recommended by the authors. Zheng
et al. [17] claimed that PSO with increasing inertia weight
performs better. However, the authors used a different set
of learning factors, and it is not clear from the paper how
this affects the performance. A randomized inertia weight
is also used in several reports. The inertia weight can be
set to [0.5 + (Rnd/2.0)], which is selected in the spirit of
Clerc’s constriction factor [14].

F. Other parameters

Particles” velocities are clamped to a maximum
velocity Vmax, which serves as a constraint to control the
global exploration ability of particle swarm. Generally,
Vmax is set to the value of the dynamic range of each
variable.



The population size selected is problem-dependent.
Sizes of 20-30 are most common. In some situations,
large population sizes may be used to adapt to different
requirements.

II. DISCRETE VERSION OF PSO

Many optimization problems involve in discrete or
binary variables. Typical examples are scheduling
problems or routing problems. The updating formula of
POS and procedures are oriented from and designed for
continuous spaces. Some changes have to be made to
adapt to the discrete spaces. The coding changes may be
simple, but it is hard to define the meanings of velocities
and determine the changes of trajectories.

Kennedy et al. [18] defined the first discrete binary
version of PSO. The particies are coded as binary strings.
The velocities are constrained to the interval [0, 1] by
using the sigmoid function and are interpreted as
“changes of probabilities”. Chang et al. [19] applied the
method to feeder reconfiguration problems and showed it
is efficient in searching for the optimal solutions.

Mohan et al. [20] proposed several binary approaches
{direct approach, quantum approach, regularization
approach, bias vector approach, and mixed approach} and
no conclusion was drawn from limited experimentation.

Hu et al. [21] introduced a modified PSO to deal with
permutation problems. Particles were defined as
permutations of a group of unique values. Velocities are
redefined based on the similarity of two particles.
Particles make switches to get a new permutation with a
random rate defined by their velocities. A mutation factor
is also introduced to prevent the current pBest from being
stuck at local minima. Preliminary study on n-queens
problem showed that the modified PSO is promising in
solving the constraint satisfaction problems.

When dealing with integer variables, PSO sometimes
are easily trapped into local minima. It seems PSO can
locate the optimal area but fails to exploit more details,
The philosophy behind the original PSO is to learn from
individual’s own experience and his peers’ experience.
How to effectively apply these rules to discrete problems
is still an open issue. A direct translation of the original
PSO might not be the only choice.

IV. PSO IN COMPLEX ENVIRONMENTS

A. Multiohjective optimization

In recent years, multi-objective optimization has been a
very active research area. In multi-objective optimization
(MOQ) problems, objective functions may be optimized
separately from each other and the best solution may be
found for each objective. However, perfect solutions
which are optimal on all the objective dimensions can
seldom be found due to the fact that the objective
functions are often in conflict among themselves. This
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results in there being a group of alternative solutions
which must be considered equivalent in the absence of
information concerning the relevance of each objective
relative to the others. The group of alternative solutions is
known as a Pareto optimal set or Pareto front.

The information sharing mechanism in PSO is
significantly different from other population based
optimization tools. In genetic algorithms {(GAs),
chromosomes exchange information with each other by
crossover, which is a two-way information sharing
mechanism. In PSO, only nBest gives out information to
others. Tt is a one-way information sharing mechanism.
Due to the point-attraction characteristics, traditional PSO
is not able to locate multiple optimal points
simultaneously, which represent the Pareto front.
Although multiple optimal solutions could be obtained
through multiple rtuns with different weighted
combinations of all the objectives, a method that could
find a group of Pareto optimal solutions simultaneously is
preferred.

In PSO, a particle is an independent intelligence agent,
which searches the problem space based on its own
experience and the experiences of peer particles. The
former is the cognitive part of the particle update formula,
while the latter is the social part of particle update
formula. Both play crucial rules to guide the particie’s
searching. Thus, the selection of social and cognitive
leaders (nBest and pBest) is the key point of MO-PSO
algorithms [6, 7, 22-29],

The selection of the cognitive leader follows the same
rule in traditional PSO. The only difference is that the
leader is determined by Pareto dominance. It is possible to
let each particle have multiple memory slots to store more
Pareto optimal solutions. No report has been found in the
literature.

The selection of the social leader includes two steps,
which are similar to the selection of nBest. The first step
is to formalize a candidate pool from which the leader is
chosen. In traditional PSQ, the leader is chosen from the
pbest values of neighbors. A more popular method in
MO-PSO is to use an external pool to store more Pareto-
optimal solutions.

The second step is the process to choose the leader. The
selection of nBest should satisfy the following two
criteria: first, it should provide effective guidance to the
particle to get better convergence speed; second, it also
needs to provide a balanced search along the Pareto front
to maintain population diversity. Two typical approaches
have been employed in the literature: 1. Roulette wheel
selection scheme: In this approach, all candidates are
assigned weights based on some criteria, which can be
crowding radius [29], crowding factor {24], niche count
[24} or other measurements. Then random selection is
used to choose the social teader [6, 24, 29, 30]. The aim



of this process is te maintain population diversity. 2.
Quantitative standards: In this appreach, the social leader
is determined by some procedure without any random
selection involved [7, 22, 23, 27].

Ray er al. 129] combined the Pareto ranking scheme
and PSO 1o handle MO problems. A set of leaders (SOL),
which are better performing particles, are selected based
on the Pareto ranks during each generation. The
remaining particles will setect a leader from the set of
leaders as nBest and move to a new location. The
selection of a leader from the SOL is based on a roulette
wheel scheme that ensures SOL members with a larger
crowding radius have a higher probability of being
selected as a leader.
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Figure 3. Pareto ragking scheme in Ray et al.

Coello Coello et al. [6] used a two-step selection
process to get the social leader, First fitness hyperspace is
divided into small hypercubes, and each cube was
assigned a weight which is inversely proportional to the
number of non-dominated solutions inside the cube. Then
roulette-whee! selection is used to select one of the
hypercubes from which the nBesr will be picked. In the
second step, a social leader will be randomly picked from
the selected hypercube.
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Figure 4: Particle search scheme in Coello Coello ef al.

Mostaghim et al. [27] introduces the sigma method as a
new method for finding the best social leader for each
particle of the population. Sigma values are calculated for
each individual in the candidate pool as well as the
patticle, while the sigma value for a two-objective
optimization problem is defined as in (c). Then the
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particle will find a social leader with minimal sigma
distance to the particle.
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Figure 5: Sigma method in Mostaghim ef af.

Fieldsend [22] ef. al proposed a dominated tree for
storing the particles shown in figure 6.
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Figure 6: Pareto ranking scheme in Ray et al.

Hu er. al developed a dynamic neighborhood strategy
o pick the social leader in MOPSQ. The objectives are
divided into two groups. One objective is defined as the
optimization objective, while all the other objectives are
defined as neighborhood objectives. First the distances
between the current particle and all the candidates are
calculated, and then a group of neighbors are picked
based on the distances. Then the candidate with the
minimum fitness value of the optimization objective
becomes the social leader, The method is simple and
intuitive. However, the drawback is that it is sensitive to
the selection of objectives.
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Figure 7. Dynamic neighbor PSO in Hu ef al,

B. Constraint Optimization

There are some studies reported in the literature that
extend PSO to constrained optimization problems. The
goal of constrained optimization problems is to find the
solution that optimizes the fitness function while
satisfying a group of linear and non-linear constraints. For
constrained optimization problems, the original PSO
method needs to be modified to deal with constraints.

Hu and Eberhart [5] introduced a fairly easy but
effective method to solve the constrained optimization
problems. The preserving feasibility strategy is employed
to deal with constraints. Two modifications were made to
PSO algorithms, 1. When updating the memoties, all the
particles anly keep feasible solutions in their memory, 2.
During the initialization process, all particles are started
with feasible solutions. Various test cases showed that
PSO is much faster and better than other evolutionary
constrained optimization techniques when dealing with
optimization problems with linear or nonlinear inequities
constraints. The disadvantage is that the initial feasible
solution set is sometimes hard to find.

El-Gallad et gl [4] introduced a similar methed. The
only difference is that when a particle is outside of
feasible space, it will be reset to the last best value found.
The potential problem is that it may limit the particles to
the region where they are initialized.

Parsopoulos ef al. [31] converted the constrained
optimization problem into a non-constrained optimization
problem by adopted a non-stationary multi-stage
assignment penalty function and then applied PSO to the
converted problems. Several benchmark problems were
tested and the author claimed it outperformed other
evolutionary algorithms, such as Evolution Strategies and
GAs.

Ray et al [32] proposed a swarm metaphor with a
multilevel information sharing strategy to deal with
optimization problems. In a swarm, there are some better
performers (leaders) that set the direction of search for the
rest of the individuals. An individual that is not in the
better performer list (BPL) improves its performance by
deriving information from its closest neighbor in the BPL.
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The constraints are handled by a constraint matrix. A
multileve! Parete ranking scheme is implemented to
generate the BPL based on the constraint matrix. 1t should
be noted that the update of each particle uses a simple
generational operator instead of the regular PSO formula.
Test cases showed much faster convergence and much
lower number of function evaluations.

C. PSO in dyramic environments

A dynamic system changes state frequently or even
perhaps almost continuously. Many real-world systems
involve in dynamic environments. For example, most of
the computational time in scheduling systems is spent in
rescheduling, caused by changes in customer priorities,
unexpected equipment maintenance, etc. In real-world
applications, then, these system state changes result in a
requirement for frequent re-optimization.

Initial work in tracking dynamic systems with particle
swarm optimization was reported in Eberhart and Shi
[33]. The follow-up paper [9] introduces an adaptive
PSO, which automatically tracks various changes in a
dynamic system. Different environment detection and
response techmiques are tested on the parabolic
benchmark functions, and re-randemization is introduced
to respond to the dynamic changes. The detection method
used is to monitor the behavior of the best particle in the
population. Carlisle [8] used a random point in the search
space to determine if the environment changes.

Blackwell [34] added a charged term to the particle
updating formula, which keeps the particles in a extended
swarm shape to deal with fast changing dynamic
environments. No detection is needed in the proposed
tnethod.

V. APPLICATIONS

A. Artificial nerual network training

PSO has been applied to three main attributes of neural
networks: network connection  weights, network
architecture (network topelogy, transfer function), and
network learning algorithms. Most of the work involving
the evolution of ANNs has focused on the network
weights and topological structure. Usually the weights
and/or topological structure are encoded as a chromosome
in GAs. The selection of the fitness function depends on
the research goals. For a classification problem, the rate
of mis-classified patterns can be viewed as the fitness
value.

Compared with the back-propagation training method,
the advantage of PSO is that it can be used in cases with
non-differentiable PE transfer functions and no gradient
information available. There are several papers reporting
use of PSO to replace the back-propagation learning
algorithm in ANN in the past several years [35-40]. They
showed that PSO is a promising method to train ANNs. It
is faster and gets better results in most cases. It also
avoids some of the problems GAs encounter.



B. Interaction with other computational method

Besides neural network training, PSO has been
combined with various techniques to solve different
problems such as fuzzy system [41, 42], self-organizing
maps [43], support vector machine [44], and hidden
Markov model training [45] etc.

C. Parameter Optimization

As an optimization method, PSO has been appiied to
various parameter estimation and optimization problems.
For example, Abido er al. [46, 47] applied PSO to
optimize parameter settings of power system stabilizers as
well as the optimal power flow problem [43].

D. Feature Selection

Agrafiotis [49] adapted PSO to the problem of feature
selection by viewing the location vectors of the particles
as probabilities and employing roulette wheel selection to
construct candidate subsets. Testing results showed that
the method compares favorably with simulated annealing.
The authors also claimed that PSO does not converge as
reliably to the same minimum. One possible reason is the
selection of learning factors. Both factors are set to 1 in
the experiments, which might be too small according to
previous discussion.

V1. SUMMARY

As an emerging technology, particle swarm has gained

a lot of attention in recent years. The first IEEE Swarm

Intelligence Symposium was held in Indianapolis, USA in

April, 2003. Authors from various countries presented

over 30 papers in related areas. The response was

encouraging. Nevertheless, there are still many unsolved
issues in particle swarm including but not limited to:

=  Convergence analysis. It is still not clear that why
and how P3O converges. 1t is also important to the
theoretical research of swarm intelligence and chaos
systems.

*  Discrete/binary PSO. Most of the research projects
reported in the literature deal with continuous
variables. Limited research showed that PSO has
some difficuities dealing with discrete variables.

*  Combination of various PSO techniques to deal with
complex problems.

= Agent-based distributed computation. PSO can be
viewed as a distributed agent model and many agent
computing characteristics are still uncovered.

* Interaction with biological intelligence. Rooted in
artificial life, PSO is successful even only simple
rules in biological worlds are adopted. What if more
compiicated rules are included?
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